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Abstract 
 

This paper explores the development and potential applications of plant-based wearable energy harvesters, focusing on their role in smart 
farming. While plant wearables have historically been rigid, recent studies suggest the importance of ultrathin, flexible, and stretchable designs 
in plant wearables. New designs of the devices take into account the dynamic nature of plants, making wearables durable while decreasing the 
risk of causing physical damage to the plant. Energy harvested through these plant wearables provide energy to power self-sustaining agricultural 
sensors that can continuously monitor plant microclimate data. The paper emphasizes the importance of using materials and designs that conform 
to the dynamic and delicate structure of plants, ensuring both mechanical compatibility and long-term functionality. Stretchable designs like 
serpentine, wrinkled, kirigami, and island-bridge structures are discussed for enhancing device flexibility. Various energy sources are explored, 
out of which solar power is highlighted as the most promising by the study. Additionally, mechanical energy from plant movement and chemical 
energy from biofuel cells are also explored as supplementary options. Despite current challenges, such as efficiency and durability in outdoor 
environments, plant-based wearables present a promising direction for sustainable agriculture and renewable energy integration. 
 

Keywords: Stretchable energy harvester, Plant-based wearable electronics, Smart farming, Renewable energy, Biofuel cells, Photovoltaic cells, Triboelectric 
Nanogenerators. 
 

	
INTRODUCTION 
 
As agricultural systems advance, energy consumption becomes 
a critical factor. Global economic growth over the centuries 
has been fueled by non-renewable energy sources such as 
petroleum, coal, and natural gas (Hao et al., 2013). These 
fossil fuels, while driving economic expansion, are finite and 
contribute significantly to environmental degradation through 
the release of greenhouse gases, leading to climate change and 
global warming. The depletion of these resources, coupled 
with rising energy costs, has underscored the urgent need to 
transition to renewable energy sources. Renewable energy 
offers a viable alternative, providing both economic and 
environmental benefits (Güney, 2019). By harnessing clean 
energy from solar, wind, and plant-based sources, countries 
can mitigate the harmful effects of fossil fuels while 
addressing the growing energy demands (Majeed et al., 2023). 
Among the renewable energy sources being explored, plant-
based energy harvesting presents a unique and promising 
avenue, particularly within the context of smart farming.(Teng 
et al., 2018) Recent studies have demonstrated that plants can 
generate electrical signals through their excitable membranes, 
and this bioelectricity can be harnessed for energy production 
(Babu et al., 2022). In addition, plants contribute to carbon 
sequestration by absorbing carbon dioxide, making them a 
dual-purpose tool for both energy generation and 
environmental protection. Furthermore, the application of 
flexible electronics, which can conform to the dynamic and 
curvilinear surfaces of plants, has opened new possibilities for 
continuous monitoring of plant health as well as 
simultaneously harvesting mechanical and chemical energy 
from the plants (Pechsiri & Puengsungwan, 2023). One of the 
most innovative approaches within smart farming is the 
development of plant wearable devices flexible, biocompatible 
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sensors that can be seamlessly integrated with plant surfaces to 
monitor key physiological and environmental parameters (Qu 
et al., 2021). These devices provide real-time data on plant 
health, growth, and environmental conditions, aiding in more 
informed and precise decision-making. However, the 
widespread deployment of plant wearables is hampered by 
challenges related to energy supply, as traditional energy 
sources are not always practical in remote or large-scale 
agricultural fields. Energy harvesting technologies offer a 
promising solution by enabling plant wearables to generate 
power autonomously from renewable sources. Solar energy, 
mechanical energy from plant movement (such as leaf 
oscillation due to wind or rain), and chemical energy generated 
through bioelectrochemical processes in plants are all viable 
options for powering these devices (Greenman et al., 2024; 
Hao et al., 2013; Jadhav & Shreelavaniya, 2023). Flexible 
electronic materials, such as lightweight photovoltaics, 
piezoelectric and triboelectric nanogenerators, and biofuel 
cells, allow plant wearables to capture and convert these 
various energy forms into usable electrical power. This 
approach not only overcomes the energy supply issue but also 
aligns with the goal of sustainable agriculture by reducing 
reliance on external power sources. 
 
This review will explore the role of plant wearable devices in 
smart farming, focusing on energy harvesting systems that 
utilize solar, mechanical, and chemical energy. By integrating 
these renewable energy solutions into plant wearables, smart 
farms can achieve self-sustaining, eco-friendly systems that 
enhance agricultural efficiency and sustainability. (Figure 1) In 
the following sections, we will discuss the key technologies 
and materials involved in plant wearables, the energy 
harvesting mechanisms, and the potential challenges and 
opportunities for scaling up these systems in modern 
agriculture. 
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Research has demonstrated various ways to integrate solar 
energy harvesting into plant-based systems. One example 
involves organic solar cells using plant-based sensitizers like 
orange and purple eggplant extracts, which have been shown to 
generate electricity with a solar conversion power of 0.66 
mW/cm² (Calogero & Marco, 2008). Another significant 
advancement is the use of flexible PV cells embedded directly 
onto plant leaves, allowing them to harness solar energy 
efficiently without the need for external solar tracking systems. 
This setup is particularly useful since plants naturally orient 
themselves toward sunlight, optimizing light exposure and, 
therefore, energy harvesting. In addition to outdoor 
applications, plant-based solar energy harvesting systems can 
also function in controlled indoor environments (Yerva et al., 
2012). Flexible solar cells applied to plant leaves in 
greenhouses or indoor farms can capture ambient light and 
power sensors or monitoring devices. The advantage of this 
method is that it supports continuous monitoring of plant 
health, even in low-light conditions. The integration of PV 
cells into plant systems allows for a steady energy source that 
can power smart farm technologies without relying on external 
power supplies (Teng et al., 2018). 
 
Mechanical energy 
 
Mechanical energy harvesting involves capturing kinetic 
energy from motion, vibration, or other mechanical forces and 
converting it into electrical energy. This approach is highly 
relevant to plant wearables, as plant structures like leaves and 
branches constantly move due to wind, rain, and other 
environmental forces (Guigon et al., 2008). Among the 
techniques used for mechanical energy harvesting, 
piezoelectric, electromagnetic, and triboelectric mechanisms 
are particularly prominent. Piezoelectric systems, for instance, 
utilize materials that generate electric charges when subjected 
to mechanical stress, making them ideal for capturing energy 
from the bending and swaying of plants. Piezoelectric energy 
harvesting systems have been demonstrated to generate 
varying levels of recoverable energy depending on 
environmental conditions. For example, researchers have 
found that energy harvests from rainfall can range from 0.8 
µJ/s during light rain to 1.2 mJ/s during heavy 
downpours.(Guigon et al., 2008; Ong et al., 2016; Wong et al., 
2015) To optimize energy output, researchers like F. Viola et 
al. have explored different piezoelectric structures, concluding 
that cantilever designs are more effective in capturing vertical 
movements, such as the impact of raindrops on plant 
leaves.(Viola, 2018) However, despite the promise of 
piezoelectric systems, their energy output is often inconsistent 
and requires additional storage systems to stabilize the 
harvested power for continuous use in agricultural sensors. 
 
Triboelectric nanogenerators (TENGs) offer an alternative 
approach to mechanical energy harvesting. TENGs work by 
harnessing the triboelectric effect, in which two materials with 
different electron affinities generate electrical charges upon 
contact and separation. When integrated into plant-based 
systems, TENGs can convert the motion of leaves or the 
impact of rain into electrical energy. For instance, the first leaf-
assembled TENG (Leaf-TENG) developed by Jie et al. 
successfully captured mechanical energy from plant leaves 
under manual vibration, generating a maximum power output 
of 45 mW/m².(Jie et al., 2018) This power was sufficient to 
charge a capacitor and power small devices, such as LEDs and 
temperature sensors, demonstrating the feasibility of TENG-

based energy harvesting in plant wearables. Several studies 
have further explored the potential of TENGs for plant-based 
energy harvesting in natural outdoor environments. Meder et 
al. demonstrated the first triboelectric energy harvesting 
system using living plants, such as Rhododendron 
yakushimanum and Nerium oleander, which captured wind 
energy through leaf movement (Meder et al., 2018). By 
optimizing the dielectric materials and increasing the contact 
area, the system achieved power outputs of up to 15 µW/cm². 
The group also designed systems that could scale energy 
harvesting by connecting multiple leaves, resulting in a 
maximum power output of 300 Nw (Meder et al., 2020). Such 
systems are ideal for powering small-scale electronic sensors 
that monitor plant health and environmental conditions. 
 
In more recent advancements, researchers have focused on 
enhancing TENG designs to better withstand outdoor 
conditions, such as wind, rain, and humidity. For example, Lan 
et al. developed a waterproof and breathable TENG (WB-
TENG) that adhered to plant leaves and efficiently converted 
wind and raindrop impact into electrical energy (Lan et al., 
2021). The film-based design, embedded with fluorinated 
carbon nanotubes, improved output performance while 
ensuring excellent water repellency and breathability. Such 
systems hold the potential to serve as wireless power stations 
for plant-based wearable sensors, transmitting data about plant 
health to mobile devices. 
 
Chemical energy 
 
Chemical energy harvesting, particularly through biofuel cells, 
represents a promising approach for generating electricity from 
plants by converting chemical energy into electrical energy. 
One method involves enzymatic biofuel cells, which use 
oxidoreductase enzymes to catalyze the conversion of 
chemical compounds like glucose and oxygen into electricity. 
This technology has been extensively studied in medical 
applications, such as powering implantable devices. However, 
its potential application in plant systems has only recently 
gained attention, with studies demonstrating the feasibility of 
converting the chemical energy in plants into usable power. A 
significant breakthrough in plant-based biofuel cells was first 
demonstrated by Mano et al., who developed a biofuel cell 
using grapes (Mano et al., 2003). The device was based on 
carbon fiber electrodes functionalized with redox polymers, 
glucose oxidase, and bilirubin oxidase enzymes. The grape 
biofuel cell was able to generate 240 μW/cm2 of power and 
maintain 78% of its initial output after one day of operation. 
Similarly, biofuel cells have been implanted in cactus plants, 
where the power output increased by 70% under light 
conditions compared to dark conditions, suggesting the role of 
photosynthesis in boosting glucose and oxygen levels.(Flexer 
& Mano, 2010) However, the overall power output from the 
cactus biofuel cell was significantly lower (9 μW/cm2), 
indicating that the concentration of glucose in different plant 
species can impact the performance of these cells. Another 
advancement in biofuel cell technology came with the 
development of a needle-shaped biofuel cell, designed for 
easier insertion into various living systems, including plants. 
This design separated the anode and cathode to prevent oxygen 
limitations at the cathode while improving the cell's overall 
performance. The needle-based biofuel cell implanted in a 
grape achieved a power output of 111 μW/cm2 and was 
capable of powering a small LED (Miyake et al., 2011). 
Researchers also explored the use of carbon nanotube-
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patterned electrodes, which significantly enhanced electron 
transfer between the enzyme reaction center and the electrode, 
resulting in a power density of 3.375 mW/cm2 in grape biofuel 
cells (Yoshino et al., 2013). Recent research has expanded the 
application of biofuel cells to larger fruits, such as 
oranges(Gordiichuk et al., 2021). A biofuel cell implanted in 
an orange generated 90 μW/cm2 and powered a transmitter that 
sent an email when the required voltage of 2.3 V was reached. 
The device was engineered to harvest energy from two 
different sugar sources glucose and fructose using 
pyrroloquinoline-quinone-dependent glucose dehydrogenase 
and flavin adenine dinucleotide-dependent fructose 
dehydrogenase, which are oxygen-independent enzymes. 
Despite being a destructive method for the fruit, this biofuel 
cell demonstrated that energy could be harvested from living 
plants to power small electronic devices and transmit data 
wirelessly. 
 
Microbial fuel cells (MFCs) offer another approach to 
chemical energy harvesting in plant systems. In this method, 
electrochemically active bacteria colonize plant roots, where 
they oxidize organic substrates and transfer electrons to an 
external circuit, generating electricity. Early experiments with 
plants like Glyceria maxima and Spartina anglica demonstrated 
that microbial activity on the root surfaces could generate a 
small but steady current, making this technique promising for 
applications such as powering biosensors in wetland 
environments (Timmers et al., 2010, 2012). Further research 
has focused on optimizing the performance of plant microbial 
fuel cells (P-MFCs) by enhancing the electron transfer rate and 
reducing internal resistance (Deng et al., 2012). Although 
biofuel cells and microbial fuel cells provide a renewable 
source of energy from plants, challenges remain. Enzymes 
used in biofuel cells tend to lose activity over time, limiting the 
long-term stability of the power output (Dufil et al., 2022). 
Additionally, the complexity of biological systems can result 
in electron losses, reducing the overall efficiency of energy 
conversion. However, ongoing research into electrode 
materials, enzyme stabilization, and system miniaturization 
continues to improve the performance and feasibility of plant-
based chemical energy harvesting systems. These innovations 
have the potential to power low-energy devices in agriculture, 
supporting the development of self-sustaining plant wearable 
electronics for intelligent farming systems. 
 
Conclusion 
 
The development of plant-based wearable energy harvesters 
represents a transformative step in the pursuit of sustainable 
energy solutions, particularly within the context of smart 
farming and renewable energy integration. This review 
explored various energy harvesting technologies, including 
solar, mechanical, and chemical approaches, that can be 
integrated into plant wearables to provide autonomous power 
sources for agricultural sensors and other low-power devices. 
Solar energy, harvested through flexible photovoltaic cells, 
offers a reliable method for generating power by utilizing plant 
surfaces to capture sunlight, while mechanical and chemical 
energy harvesters tap into the natural movements and 
bioelectrochemical processes of plants, providing diverse 
energy alternatives that align with the goal of sustainable 
agriculture. Solar energy harvesting remains the most 
promising and widely applied technology due to its abundance 
and efficiency, particularly when integrated into flexible 
devices that can conform to plant surfaces. Mechanical energy 

harvesters, such as triboelectric nanogenerators, complement 
solar energy by capturing energy from wind and rain, further 
expanding the functionality of plant wearables. Chemical 
energy harvesters, including biofuel and microbial fuel cells, 
leverage the natural biochemical processes in plants, offering a 
unique way to generate power from the plant’s own metabolic 
activities. These systems, when integrated with flexible and 
stretchable electronics, not only reduce dependence on external 
power sources but also contribute to the environmental benefits 
of clean energy production. Despite significant advancements, 
challenges remain in scaling up these technologies for 
widespread agricultural use. The efficiency of energy 
harvesters is often influenced by environmental factors, and 
the durability of devices in outdoor settings needs to be 
enhanced to withstand long-term exposure to the elements. 
Additionally, improving the power output of chemical and 
mechanical energy harvesters is essential for their practical 
application. Nonetheless, continued research and innovation in 
materials, design, and integration strategies hold great potential 
to overcome these obstacles, paving the way for plant-based 
wearable energy harvesters to play a pivotal role in the future 
of sustainable farming and renewable energy systems. 
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