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Abstract 
 

The purpose of this study is to investigate the effect of aggregates on the carbonation of quarry sand-based concrete. The concrete is made of 
100% quarry sand 0/6.3, gravel 8/15, and 15/25 from the Arab Contractor quarry in Nomayos, Cameroon, with CEM II B-P 42.5 R from 
CIMENCAM (Cimenteries du Cameroun). The study employed two admixtures: Sikamen and Sika liquid. Carbonation was performed on 
concrete samples at several dates until 545 days. Carbonated and non-carbonated concrete samples are compared in terms of durability aspet like 
Thermo Gravimetric Analysis (TGA) and capillary absorption. The findings of study indicate that the compressive strength is satisfactory. The 
microstructure becomes firmer and more resistant to hostile treatments. A reduction in water and pore space causes mass loss, which leads to an 
increase in elastic deformation. Sikament additive gives concrete very high plasticity and prolonged rheology, which improves compactness and 
durability. Sika water repellent reacts with the cement's lime to generate comparable crystallizations that block the mortar's capillaries, making it 
hermetic with the position of granules during chemical reactions. Accelerated. 
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INTRODUCTION 
 

The cement industry is one of the biggest emitters of 
greenhouse gases. In France, it accounts for 2.9% of CO2 
(carbon dioxide) emissions, while on a global scale this figure 
rises to 6% [1]. Aware of the need to act, cement 
manufacturers have committed to reducing their emissions by 
24% by 2030 and 80% by 2050, compared with 2015 [2]. To 
meet these targets, the cement industry's roadmap [3] identifies 
several action levers, one of the main ones being accelerated 
carbonation of aggregates.  Concrete carbonation, which is the 
reaction between cement hydrates (portlandite Ca(OH)2 and C-
S-H gel) and carbon dioxide CO2 (the main greenhouse gas 
and one of the main causes of global warming), and which 
leads to the formation of calcium carbonates CaCO3, is an 
effective treatment for recycled concrete aggregates (GBR) as 
it reduces their high porosity and high water absorption 
capacity) for their reuse [4]. Accelerated carbonation of 
concrete aggregates is therefore one of the solutions envisaged 
by the cement industry to reduce its CO2 emissions and move 
towards carbon neutrality by 2050. This type of aggregate can 
play an important role in the storage of CO2 following their 
carbonation. In order to limit the environmental impact of 
concrete and promote recycling and the circular economy in 
the construction industry, a great deal of research has been 
carried out in this field, including the carbonation of recycled 
concrete aggregates. Studies have shown that this process can 
significantly improve the properties of recycled aggregates, 
potentially facilitating their use in concrete [5], [6], [7]. What 
about the carbonation of simple aggregates from quarries, 
particularly those in Cameroon?  
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In Cameroon, the use of quarried aggregates in civil 
engineering structures has increased considerably in recent 
years, with the production of crushed sands. These sands are 
used in the formulation of mortars and concretes, but scientific 
requirements for their use are rare. This shows the renewed 
interest in the contribution of crushed sands to mortar 
properties. Research on quarry sand has shown that: B. Menadi 
et al. found that using a maximum of 15% fines [8]; O. A. 
Cabreara et al. demonstrate the link between void content and 
paste volume [9]; and A. Al-Ameeri et al. rely on the 
mineralogical source of sand, which has an impact on concrete 
behavior [10]. As for B. Benabed et al. found that the granular 
nature of quarry sand had an additional impact on mechanical 
and rheological properties. This finding refers to the granite 
sand grain configuration [11]. This led to a host of research 
studies: Benachour et al [12], M.L.K Khouadia et al [13], 
Lawrence, [14], Michel, [15] ... etc. on the use of quarry sand. 
Analysis of published research has led to the conjecture that 
several directions can be targeted. and that quarry sand is an 
adequate solution to limit the over-exploitation of alluvial 
sand, unless the mechanical properties and durability of 
concrete are not diminished [16]. Other researchers have 
focused on the effects of admixtures such as SIKA liquid water 
repellent and/or SIKAMENT superplasticizer. [17], [18], [19]. 
As carbonation is a natural phenomenon occurring with CO2, 
accelerated carbonation requires hard environment with a high 
concentration of CO2 [20], [21]. [22]. In cementitious 
materials, CO2 hardening thickens the microscopic structure, 
limits the required hardening time, ameliorates air quality and 
some properties [23], [24]. In this paper, our aim is to assess 
the role of aggregates on the carbonation of quarry sand 
concrete, by carrying out a comparative study between 
carbonated and non-carbonated concrete. The aim is to provide 
estimated criteria for optimal life-cycle inspection of quarry 
sand concrete structures as an alternative to river sand. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Physical characteristics, Chimical and Mineralogical Composition of cement (manufacturer's data) and Paste composition 
 

Physical characteristics 
  Status On Powder On paste  
  Nature Refusal to 0.08 mm (%) SSB (cm2/g) DA (T/m3) PS (T/m3) Expansion (mm) Setting (mn)  
  Cold Hot Start End  

  CEMII 1.01 3396 0.86 3.08 0 0 2h58 3h46  
  Chimical Composition of cement (manufacturer’s data)  

Elts SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI 
(%) 25.5 7 6 0.13 5 52 5 0.91 0.97 0.26 2.67 

Mineralogical composition of cement (manufacturer's data) 
Constituents  C3S C2S C3A C4AF CaSO4 Natural.pozzolan 
Proportions (%)  65-79 65-79 65-79 65-79 2.5-3.5 21 - 35 

Paste composition  
Paste composition Cement Normal sand Water Adjuvent Start-up 
Proportions (%) 500 g 0 g 162 g 0.0 % 8 : 12 

SSB : Bladine Specific Surface ; - DA : Apparent Density, - PS : Specific Weight ; - LOI : Loss On Ignition at 1000˚C, - C3S : Tricalcium Silicate ; - C2S : 
Dicalcium Silicate ; - C3A : Tricalcium Aluminate ; - CaSO4 : Calcium Sulfate. 
 

Table 2. Sand particle size analysis, Physical properties of sand and Chemical composition of crushed sand (%) from XRF (Argile, 
Géologique et Environnement Sédimentaires Laboratory, University of Liège, Belgium (AGES)) 

 
Sand particle size analysis 

Nature  Particle size analysis (% passing sieve) 
Screen 0.08 0.16 0.315 0.63 1.25 2.5 5 6.3 8 
Sand 
 (% passing) 

8.0 12.9 20.2 27.1 36.5 52.9 85.5 99 100 

 Physical properties of sand   
Sand TF MF DA(T/m3) PS(T/m3) ES (%) Visual    ES (%) Piston 

0/6.3     6.3 3.65 1.68 2.98 76 74 
Chemical composition of crushed sand (%) from XRF (AGES). 

Elts SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI 
0/6.3 65.5 15.69 7.76 0.16 2.74 1.37 1.76 2.68 0.95 0.14 0.57 

- TF : Fine Content ; - MF : Fineness Module, - ES : Sand Equivalent. [NF EN 933-8-Août 1999] [25] 
 

Table 3. Gravel particle size analysis, Physical properties of gravel 
 

 Gravel particle size analysis 
Nature Particle size analysis (% passing sieve) 

Screen (mm) 5 6.3 8 10 12.5 16 20 25 31.5 
Gravel 8/16 2.6 3.2 6.5 16.7 42.7 86.3 100   
Gravel 15/25   3.5 4.8 6.6 15.9 50.8 92 100 

Physical properties of gravel 
Nature LA (%) MDE (%) DA(T/m3) PS(T/m3)            AP (%)           PR (%) 
Gravel 8/16     /       /        1.46      2.94           18< 30%          0.99< 3% 
Gravel 15/25 10/14 10/14        1.45            2.92                  14<30%               0.82< 3% 

47.7 20.04 
- LA : Los Angeles ; - MDE : Micro Deval; - AP: Flattening Coefficient. 

 
We obtained granulometric analysis of the aggregates on the curve in figure 1. 
 

 
 

Figure 1. Size curve for the aggregates utilized 
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MATERIALS AND METHODS 
 
Materials 
 
Cement 
 
We are used Portland NC 234: 2017 CEM II 42.5 R. Table 1 
shows the results for the physical attributes, the chemical and 
mineralogical compositions of cement and paste. 
 
Sand 
 
The sand come from the Arab Contractor quarry in Nomayos, 
Cameroon. Tables 2, summarize results of sand from 
LABOGENIE (Laboratoire National de Génie Civil). 
 
Aggregates  
 
We use: 8/16 and 15/25 mm, both from the Arab Contractor 
quarry. Tables 3 describe the results of LABOGENIE's 
identification tests, which are of gneissic origin. 
 
Admixtures 
 
Sikament and water repellant are used, in standard of ASTM C 
494 type G [26] and NF EN 934-2 [27]. 
 
Methodology 
 
The 16 x 32 cm test specimens were created at LABOGENIE 
for tests at Laboratoire de Mécanique et Matériaux de Génie 
Civil (L2MGC), CY Cergy Paris University. The quantities of 
the ingredients are defined in Table 4 for 1m3 (W/C ratio = 
0.471). 
 
Carbonation 
 
An accelerated carbonation test under the following 
conditions: 3% of CO2, 65% of RH, 20°C of regulated 
temperature was done. The environment laboratory conditions 
have a temperature of 20 ± 1°C. The samples have 14 days in 
an oven at 45°C and 50% RH. Measurements dates of 
carbonate thickness are 0 days, 180 days, 360 days and 545 
days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The carbonation depth was determined by a phenolphthalein 
color indicator with the AFPC-AFREM guide [28], [29]. It’s 
obtained by the color of the indicator, which varies from non-
carbonated to carbonated zones, taking the form dark pink to 
colorless. A témoin specimen was soaked in phenolphthalein 
before being placed in a room heated to 20°C and 23% HR in 
order to compare the changes in carbonation depth with the 
specimens on display in the room. We use for the test mortar 
specimens of 150 x 100 mm2 [NF XP 18 458, 12/2022] [30]. 
The photographs in Figure 2 show the apparatus employed. 
 
Thermogravimetric analysis (TGA) 
 
Thermogravimetric analysis was carried out on 100 to 110 g of 
powdered material from the non-carbonated and carbonated 
concrete samples. The tool used was the STA 449 F1 Jupiter 
developed by NETZSCH. Thermal analysis is carried out 
according to the following temperature program: Start at room 
temperature (close to 25°C); - Linear heating from room 
temperature up to 1100°C at a rate of 10°C/min under air 
sweep (80 ml/min). 
 
Absorption by capillarity 
 
Capillary absorption was determined on 150 x 50 mm sample 
slices from 1500 x 300 mm specimens previously dried in a 
ventilated oven at T = 80°C for 7 days, followed by drying in a 
ventilated oven at T = 105°C until mass stabilization (weighed 
to the nearest 0.01 g) to within 0.05%. The samples were then 
filmed on their face to ensure absorption on the cross-section, 
while avoiding drying on the lateral face (see figure 3). 
 
RESULTS AND DISCUSSION 
 
Carbonation 
 
Figure 4. depicts the progression of carbonation depths. In 
these photos, the discolored zone's measurement were pH 
decreases from 13 to roughly 8 or 9 depending of indicator. 
The images in Figure 4 show: The carbonate zone, in which 
portlandite has completely disappeared; The mixed zone, in 
which the amount of calcium carbonate decreases and the 
amount of portlandite increases; The healthy zone, in which no 
mineralogical changes are observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Concrete formulation using quarry crushed sand 
 

Concrete constituents 
C30/37 

SA 0/6.3 Gravel 8/16 
Gravel 
15/25 

CEM II BP 
42.5R 

Water Sikament Water repellent  Slump test (cm) TD (kg/m3) 

Dosage for 
1 m3 

889.0 kg 398.6 kg 712.7 kg 400 kg 188.4 L 1.4 L  2.8 L 7.5 cm 2589 

Dosage for a 50 kg 111.3 49.82 89.09 50 23.55 0.35  0.98    /    /  

 

 
Figure 2. Demonstrates: a) preparation of specimens filmed on both cross-sectional faces to force CO2 diffusion in one direction only: 

b) depositing specimens in the carbonation chamber: c) Splitting the specimens to spray phenolphthalein 
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Figure 3. Sample preparation for capillary absorption test 
 

 
 

Figure 4. Carbonation depth changes throughout different study 
dates 

 
Thermogravimetric analysis (TGA) 
 
Thermogravimetric analysis (TGA) is the process of recording 
mass variations during a thermal cycle that are caused by 
chemical reactions or the departure of volatile constituents 
adsorbed or combined in a material. The temperatures at which 
these mass losses occur provide additional information to that 
obtained by ATD for identifying the physicochemical 
phenomena involved, and the two characterizations are 
frequently performed concurrently in the same instrument. 
These mass variations are due, among other things, to hydrate 
dehydroxylation and calcite decomposition. The mass vs. 
temperature curves are used to quantify hydrates, primarily 
portlandite, in the temperature range where they 
dehydroxylate. Similarly, calcite, particularly that formed by 
carbonation, is quantified according to its decomposition 
temperature range. This technique allows for the quantification 
of the quality of portlandite and calcium. 
 
The difficulty with TGA, however, remains in determining 
these temperature ranges, which vary according to the authors 
Mounanga et al [31]. Furthermore, in concrete with limestone 
aggregates, it is difficult to distinguish between the calcium 
carbonate formed by carbonation and that contributed by the 
aggregates. According to Thiery [32], TGA can be combined 
with chemical analysis to determine the cement fraction 
actually present in the sample, and thus quantify the various 
elements, particularly hydrates, for a representative elementary 
volume of material, independent of cementitious phase 
segregation, hydric and carbonation state. Several authors have 
described the reactions that occur in cementitious materials at 
high temperatures. In this framework, it is possible 

 
 

Figure 5. TGA and DTA curves for carbonation concrete (CC) 
and non-carbonation concrete (NCC) samples 

 
 The curves can be used to identify and quantify the mineral 

phases present in concrete. Their presence or absence 
correlates with temperature thresholds.  

 The mass losses associated with each inflection point are 
used to calculate portlandite, C-S-H, and calcite 
concentrations. In terms of TGA, non-carbonated and 
carbonated concrete show four peaks (4 inflection points) 
and three peaks (3 inflection points), respectively. 

 Between 20°C and 400°C: decomposition of AFt phases 
and C-S-H. However, several authors argue that the bound 
water of C-S-H is evacuated over a broader range, such as 
25 to 550°C, according to Taylor [33]. In this context, we 
rely on recent data from Borges et al [34], who conclude 
that the amount of water released by C-S-H is negligible 
after 300°C. Decomposition of AFm phases. Gipsum 
decomposition. Ramachandran et al [35] observed the latter 
over a temperature range of 140-170°C. Rivas-Mercury et 
al. [36] discovered katoite dehydroxylation at temperatures 
ranging from 300 to 450°C. Decomposition of brucite. 
Collier et al. [37] expand the temperature range to 350-
450°C.- The fourth between 800°C and 1000°C: 
decomposition of the magnesian part of dolomite. It is 
identified over a wider range, from 710°C to 910°C, 
according to Maitra et al [39]. TGA/DTG tests can be used 
to estimate the amount of portlandite directly. However, the 
technique is not suitable for estimating C-S-H content, due 
to the superposition of DTG peaks from the AFt and AFm 
phases. The C-S-H content is therefore estimated using 
water sorption tests and the Olson & Jennings method [40]. 

 
The heat flux peaks are primarily related to the phase change 
temperatures of the various hydrates in the cement paste, as the 
majority of limestone aggregates remain stable up to 700°C. 
The first two endothermic peaks in the TGA curves of BNC 
and BC primarily indicate the separation of water from the 
constituents of certain hydrates, CSH and ettringite [41]. The 
degradation of ettringite and CSH gel is then linked to these 
two peaks, as chemically bound water begins to evaporate 
from concrete at these temperatures. Castellotea et al [42] 
confirm that ettringite dehydration occurs before 90°C. In 
contrast, a small endothermic peak is observed. The peak at 
temperatures between 600°C and 800°C on the BNC TGA 
curve indicates the dehydration of hydrated calcium 
monocarboaluminate. 3CaO.Al2O3.CaCO3.11H2O [43]. The 
BNC TGA curve shows a significant endothermic peak at 
755˚C, indicating the decomposition of portlandite to free lime 
via the following reaction [44], [45]: Ca(OH)2 → CaO + H2O. 
It should be noted that portlandite is a key component in 
cement paste. It is derived from the hydration of cement's main 
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remain nearly identical. Despite their high fineness module, 
quarry sand base concrete has good compression resistance 
because intergranular gaps are filled. At times, the 
carbonatation depth is quite high and exceeds the minimum 
coverage value of the concrete structure. This is due to the 
accelerated carbonation and hardening conditions, the 
cumulative effect of the granules, and, most importantly, 
the use of two adjuvants. The microstructure becomes rigid 
and resistant to aggressive substances. 

 At the material level, the carbonatation process is divided 
into two major stages. The first stage marks the start of 
carbonation, when the carbonated and non-carbonated 
zones coexist in the échantillon. During this stage, two 
opposing mechanisms emerge: pore clogging and 
fissuration. The experimental data show that these two 
mechanisms compensate for macroscopical elasticity at the 
start of carbonation while increasing permeability. The 
second phase begins once the majority of the segment has 
been carbonized. At this point, pore clogging and 
microfissure closure take priority. This is largely due to the 
position adopted by the aggregates after reconfiguration 
following testing. 

 Thermogravimetric analysis (TGA), the primary method 
for determining the composition of granules and, in 
particular, fixed CO2, enables the laborious verification of 
a representative sample. It is recommended to use 
isothermal sequences and low heating speeds to avoid or 
reduce mass losses caused by successive dissociations and 
granulat. Aside from granule formation, properties such as 
water absorption and porosity play an important role in 
concrete production. However, a number of important 
properties for the formation of new concretes, such as 
elastic modulus and diffusion coefficient, cannot be 
determined directly from granular material. 

 Sikament gives the concrete a high plasticity and 
significant rheology, which improves compaction and 
durability. The Sika hydrofluoride reacts with the ciment 
chaux to form complementary crystallizations that obstruct 
the mortier's capillaries, resulting in hermeticity with the 
granules' positions during chemical reactions accelerated. 
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