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Two moveable plates and one fixed plate are shown as a 
parallel-plate micro-actuator in Figure 2 in an electric field. 
The capacitance created between the two plates changes when 
the movable plate moves off of its initial location. As a result, 
by adjusting the capacitor's gap voltage, one may alter the 
movable plate's displacement. However, a pull-in (or snap-
down) event will cause the system to become unstable when 
the gap between the two plates gets closer to two thirds of its 
initial size. This will drag the movable plate to the fixed plate, 
instantly reducing the distance to zero [10]. 
 
Developing a Simplified Equivalent Circuit Model 
 

 
 

Figure 3. Electrostatic actuator model [1] 
 

A schematic of a parallel-plate electrostatic actuator is shown 
in Figure 3. The motion of the plate is described by equations 
(1) to (5) [11, 12]. 
 
Electrostatics 
 

𝐹 ൌ
1
2
𝜀

𝐴
ሺ𝑔ሻଶ

𝑉                                                                              ሺ1ሻ 
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Equation of motion 
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1
𝑚
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Kirchoff’s Laws 
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MEMS Electrostatic Actuator to Equivalent Circuit 
 
By combining (2), (4) and (5) we can write (6) as: 
 

𝑄ሶ ൌ 𝐼 ൌ
1
𝑅
𝑉 െ

𝑄𝑔
𝜀𝐴
൨                                                                      ሺ6ሻ 

 
And by combining (1) and (3) we can write (7) as: 
 
𝑄ଶ

2𝜀𝐴
 𝑏𝑔ሶ  𝑚𝑔ሷ  𝑘ሺ𝑔 െ 𝑔ሻ ൌ 0                                             ሺ7ሻ 

With the initial condition 𝑔 ൌ 𝑔, we may solve equation (6) 
to obtain the value of charge, 𝑄, and we can solve equation (7) 
to obtain the value of gap, 𝑔. As coupled differential equations, 
these two equations can be represented as RL and RLC 
circuits, respectively. Figure 4 displays the entire equivalent 
circuit model. 
 

 
 

Figure 4. Equivalent circuit model of electrostatic actuator 
 
Deriving Mathematical Modeling of Equivalent circuit 
 
Kirchhoff's Voltage Law (KVL) provides the following to 
derive mathematical modeling for an RL circuit in figure (2): 
 

𝐼ሶ ൌ
𝑉 െ 𝐼𝑅
𝐿

                                                                                       ሺ8ሻ 

 
By contrasting equation (6) with equation (8), it can be 
asserted that the present ሺ𝐼ሻ in the RL circuit is essentially 
equivalent in numerical terms to the charge ሺ𝑄ሻ described in 
equation (6), provided that the effective inductance and 
effective resistance of the RL circuit are specified as: 
 

𝑅 ൌ
𝑔
𝜀𝐴

, 𝐿 ൌ 𝑅                                                             ሺ9ሻ 

 
Consequently, the resolution of equation (6) can be achieved 
through the application of an RL circuit. Likewise, the 
Kirchhoff's Voltage Law (KVL) in an RLC circuit provides: 
 

𝐿𝐼ሶ  𝑅𝐼 
1
𝐶
න 𝐼 𝑑𝑡 ൌ 𝑉                                                              ሺ10ሻ 

 

After differentiating (10) and assuming zero initial conditions, 
we obtain: 
 

𝐿𝐼ሷ  𝑅𝐼ሶ 
1
𝐶
ሾ𝐼ሿ ൌ 𝑉ሶ                                                                     ሺ11ሻ 

 
By comparing equation (7) with equation (11), it can be 
affirmed that the current ሺ𝐼ሻ in the RLC circuit is numerically 
identical to the gap ሺ𝑔ሻ in equation (7), provided that the 
effective resistance, inductance, capacitance, and input voltage 
of the RLC circuit are specified as: 
 

𝑅 ൌ 𝑏, 𝐿 ൌ 𝑚, 𝐶 ൌ
1
𝑘

, 𝑉 ൌ නቆ𝑘𝑔 െ
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2𝜀𝐴
ቇ𝑑𝑡 ሺ12ሻ 

 

The initial current passing through the inductor in the RLC 
circuit must be numerically equal to 𝑔 since the initial gap 
equals 𝑔. 
 
Deriving State Space Equations 
 
To obtain the state-space equations for the electrical system in 
question that the following equations describe: 
 

�̇�ሶ ൌ ሺ𝑉 െ 𝐼𝑅ሻ/𝐿  
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Resistance had an impact on the circuit's current (I) response; 
at lower resistance values, Ohm's law dictated that the current 
increased quickly; at higher resistance values, the inductance's 
time constant caused the current to increase more slowly. An 
extra integral term added to the equation of motion in the LRC 
circuit simulation made it more complicated. The circuit's 
behavior over time was impacted by the integral term, which 
added a memory effect. The resistance, inductance, and 
capacitance all had an impact on the current response's damped 
oscillatory behavior. The damping and oscillation 
characteristics varied for different resistance levels.  We 
examined the motion of an object with mass (m = 4.14e-7 kg) 
due to damping, a spring constant, and external forces in the 
equation of motion simulation. The simulation demonstrated 
how the spring constant, damping, and external force affected 
the object's position and velocity over time. The spring 
constant affected the oscillation frequency and stiffness, while 
damping led to a gradual reduction in oscillation amplitudes 
and a settling at a new equilibrium position. These simulations 
aid in our comprehension of how, under particular initial 
conditions and parameter settings, the behavior of various 
physical systems varies over time. They serve as examples of 
basic mechanics and circuit theory concepts. 
 
Conclusion 
 
Using an equivalent circuit model, the state space equations 
and simulation of MEMS electrostatic actuators have been 
investigated in this article. MEMS electrostatic actuators and 
their significance in the field of MEMS technology and 
engineering were first discussed. Notable advancements in the 
discipline include the creation of a simpler equivalent circuit 
model and the ensuing derivation of state space equations. The 
suggested modeling and simulation approaches have been 
validated by the outcomes of LR and LRC circuit simulations 
as well as equation of motion simulations performed in 
MATLAB. These results provide useful guidance for the 
design and optimization of MEMS electrostatic actuators, 
improving their functionality over a broad spectrum of 
applications. By investigating more intricate MEMS actuator 
designs and adding more parameters to the analogous circuit 
model, future research can expand on these findings. By 
expanding the possibilities for creating sophisticated MEMS 
devices, this work enhances the potential of microscale 
electromechanical systems. 
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