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Abstract

We present an application on a new Lyapunov-type inequalities given by Martin Bohner and Agacik Zafer [13] for linear Hamiltonian systems
onarbitrary time scales, which improve many results and the related ones in the literature. As an application, we obtain new disconjugacy criteria
for linear Hamiltonian systems.
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INTRODUCTION

We show an application on the establish Lyapunov-type inequalities for the planar Hamiltonian system established by Martin
Bohner and Agacik Zafer [13]

xh = Z aj(a+e)x’ + Z Bi(a + e, ub = —Z yi(a+e)x’ — Z a;(a + e)u, (1.1)
J J J J
where ;, B;, y; are sequences of real-valued rd-continuous functions defined on a given arbitrary time scale T.

Lyapunov-type inequalities have proved to be very useful in studying the qualitative behavior of solutions such as oscillation,
disconjugacy, and eigenvalue problems for differential and difference equations. Although Lyapunov-type inequalities are well
developed for the continuous case after the appearance of Lyapunov's well-known inequality, discrete Lyapunov-type inequalities
and their time scale versions are in early stages and therefore need to be improved.

Recently, He et al. [8] have obtained several Lyapunov-type inequalities for the Hamiltonian system (1.1), which improved the
earlier results given by JIANG and ZHou [9], and hence the related ones in [1,2,5-7]. The following theorem seems to be the best
result for (1.1) thus far (see [13]).

Theorem 1.1 (See [8, Theorem 3.1]). Suppose that

1—u(a+e)z aj(a+e)>0 forall a+e€T (1.2)
j

and

pilate)=0 forall a+e€T. (1.3)

Fora,a + € € T* with o(a) < a + €. Assume (1.1) has a real solution (x,x + €) such that x is nontrivial and has generalized
zeros at a and a + €, i.e., either x(a) = 0 or x(a)x?(a) < 0; either x(a + €) = 0 or x(a + €)x°(a + €) < 0. Then one has the
inequality

1
2

ate o(a+e) a+e
j Z |aj(a +e)|A(a+e) + z U pi(a+e)A(a + e)f yiia+e)lla+e)| =2, (1.4)
a joe ¢

where we put as usual A* = max{4, 0} for any 1 € R.

In all Lyapunov-type inequalities given for (1.1) in the literature, the condition (1.2) is a must. We show following [13] that this
condition can be completely dropped. To do this, we will introduce a new definition for a generalized zero, motivated by the one
given in [11] for the discrete case.

*Corresponding Author: Mohammed Elkhider
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Note that inequality (1.4) is trivial if

f z laj(a+ €)|Aa+e) = 2.
a Jj

Form (1.2) we have

f‘““ Ala + €)
o lula+e)|

Let

f Z loj(a+ e)lA(a+e) < 2,
a j

Similarly
fa+36 A(a+e)
a

w@tol -~

then inequality (1.4) is equivalent to

o(a+e) e a+e
f Z ,Bj(a+e)A(a+e)f v (a+eh(a+e) = [2—.[ Z laj(a+e)|a(a+¢)
a ] a a ]

2

. (15)

As an improvement as well as an alternative to inequality (1.5), we will also show that if

1—u(a+e)z aj(a+e)#0forall a+€€T, (1.6)
Jj

then a Lyapunov-type inequality of the form

a-(a+6) +€ ate
j Z Bila+e)A(a+ e)f yj+(a +e)A(a+€) = 4exp <—f Z |wu(a+5) (—aj(a + 6))| A(a + 6)) .7
a Ji a a J

holds, where

log [1+hzl L 014 hz=0
wh(z)={ n TRz

Z, h=0.

In fact, inequality (1.5) follows from (1.7) under an additional condition implying (1.2), see Remark 3.17 below.

Definition 1.2. A real nontrivial solution (x,u) of (1.1) is said to have a relative generalized zero (with respect to x) at ty € T if
either x(t,) = 0 or x*(t,) < 0, where

x*(a+e€):=|1- Z pla +e)aj(a+e)|x(a+ e)x(a(a + 6)), (1.8)
J
Definition 1.3. The Hamiltonian system (1.1) is said to be relatively disconjugate (with respect to x) on [a, a + €]y if there is no
real solution (x, u) with x having more than one generalized zero in [a, a + €].
The paper is organized as follows. First we give some properties of the time scale exponential function and introduce some

estimates for a time scale exponential bound function. Lyapunov-type inequalities will be given in Section 3. The last section is
devoted to a simple application, namely new disconjugacy criteria are given for linear Hamiltonian systems.
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1. Time Scales Series of Exponential Functions

Now let p;: T - R be rd-continuous and regressive, i.c.,

1+Z ula+e)pjate)#0 forall a+e€T,

j
and weleta + 2¢,a +€,7r € T.

Definition 2.4. [13] The time scales series of exponential functions is defined by

ate
Z ep].(a +e€,a+2€):=exp Z $u(are) (pj(a + e)) A(a+¢€) ),
j a+2e J
where
g +hD) 01 4hz =0
§n(2):= { R T
Z, h=0

is called the cylinder transformation.
Some of the properties enjoyed by the time scales series of exponential functions are given next (see [13]).

Theorem 2.5 (See [4, Theorem 2.36]). We have

1 1
D, Conlateatza=)  e@teata=) o (@teatze Where 2. OP=), Tigy @9
J J J

J J

Z ep].(a +e€a+ 26)ep].(a + 2¢,17) = Z ep].(a +¢€,1), Z ep].(a +ea+e)=1, (2.10)

j j j
ep].(a + 2¢,)
Z e{,’}.(-, a+2e) = Z (1 + /,tp]-)ep].(-, a+ 2¢), Z eg].(a + 2¢,) = Z ij_, (211
j j j j /
And

Z eﬁj.(-,a + 2¢€) = Z pjep;(a+ 26), Z eﬁj(a +2¢,) = —Z pjep;(a+ 2€,). (2.12)
Jj j

j j
The following variation of parameter formula holds (see [13]).

Theorem 2.6(See [4, Theorem 2.74]). Suppose f: T — R is rd-continuous. Then x solves
x4 = —Z pj(a+e)x®+ f(a+e)
j

if and only if

ate

x(a+e)= Z epj(a + 2¢,a + e)x(a + 2¢) + Z ep].(a +ea+e)f(a+e)A(a+e).

j a+2e J

Theorem 2.7. (See [3, Proof of Theorem 3.4]). We have

ate

Z |epj(a +e€a+ 26)| = exp
J

Z Yu(a+e) (pj(a + 6)) A(ate) |,
j

a+2e

where

log [1+hz] = 01+ hz0
wh(z)5={ h ’ ’ d

Z, h=0.
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We now introduce a function that will serve as a bound for the absolute value of the series of exponential functions on time scales.

Definition 2.8. The time scales series of exponential bound functions is defined by

€ =

ate
Z Ep].(a +€,a+ 2€):=exp f Z |1/)M(a+e) (pj(a + 6))| A(a+¢€) ).
7 a+2 7

For later use, some of the properties satisfied by the time scales series of exponential bound functions are gathered next. Theorem
2.9. We have (see [13]).

Theorem 2.9. We have
1 sz Ey, (5 +26,5 +¢) sz E, (5+365) ifex0, (2.13)
j j
Z Epj(§+e,§+2€)sz |ep].(§+2€,§+e)| SZ Ep].(§+26,§+6) for €<0, (2.14)
j j j
z: %ﬁ§+%j+f)£§: km6+za§+@|s§: E,,(S+e5+26) for €20, (2.15)
j j J

Z Ep, (min{S + €,5 + 2¢}, max{§ + €, 5 + 2¢}) < Z |e,,).(§ + 26,5+ 6)| < Z Ep, (max{5 + ¢€,5 + 2¢}, min{§ + €, 5 + 2¢}), (2.16)
Ji J Ji

. . . . 1
Z Eep].(s+2€,s+e) =Z Ep].(s+2€,s+e) —Z E, Gtest2o) (217)
J J j J
Z Ep].(§ + 2¢,5 + e)Epj(§ +er1) = z Ep].(s”* + 2¢, r),z Epj(s”* + 26,5+ 2¢) =1, (2.18)
J j j

and

1
ES(,§+¢€ =maxz 1+ upi|,—tE,.(-, 5§+ ¢€). 2.19
Z 7 (5 +€) {| upj| |1+ij|} (5. (219

J

Proof. Clearly, (2.13) and (2.18) follow from the definition of E. The second equality of (2.17) follows from (2.18). Now note
that implies

log [1+u(§+2€)(Epj)(5+2¢)| .
N 2 — , u(+2e)#0
Z]' lpu(§+2€)((e pj)(s + 26)) = { / g(s+2€) } ,
Y (©p)E+2e, u(E+2€)=0
(. ltmmmarce
_ ) I
=Y pjE+2e), u@E+2e) =0

\ U +2€) =0
== Busr20 @G +26)
J

Implies

D Mo (©@pG +26D] = Y [usrzo @i +26)|

J J



3170 International Journal of Science Academic Research, Vol. 02, Issue 11, pp.3166-3178, November, 2021

This shows the first equality of (2.17). Now let € < 0. Then we have

$+2€ s42¢
Z |ep).(§ + 26,5+ E)| = exp <f Z Yu(a+e) (pj(a + 6)) Aa + 6)) < exp <ﬁ 2 Z |¢u(a+e) (pj(a + e))| Aa + E))
s I S+e 7

Jj S$+e
= Z Ep).(§ + 26,5+ €).
J

This shows the second inequality of (2.14). Moreover, by using (2.9), (2.17), and the second inequality of (2.14), we obtain

1 1 1
6 +26540] = S Y N YR W o,
Z | Pj | |€epj(§+26;§+f)| - Eepj(s+26,s+e) - Epj(s+26,s+e) - Pj

J J

This shows the first inequality of (2.14). Next let € = 0. Then we can use (2.9), the second inequality of (2.14), and (2.17) to
obtain

1 1
e, (§+¢€5+2¢€) =z ZZ — — =Z E, (5+ ¢35+ 2¢).
Z |p’ | |epj(§+26,§+e)| i Ep,-(5+26,5+6) ; Py

J J

which shows the second inequality of (2.15). Moreover, by using ( 2.9 ), the second inequality of (2.15), and (2.17), we obtain

1 1 1
G est20]=Y S I N YR W o,
Z | Pj | |eepj(§+6,§+26)| - Eepj(s+26,s+e) - Epj(s+26,s+e) - Pj

j j
This shows the first inequality of (2.15). Finally, (2.16) follows by combining (2.14) and (2.15).
2. Lyapunov-Type Inequalities
For the following (see [13])

Theorem 3.10. Let a, a + € € T* with 6(a) < a + €. Assume (1.6) and

Z Bila+e) =0, Z Bia+e)£0, a+e€laar+tel (3.20)
j j

If (1.1) has a real solution (x,u) such that x(a) = 0 and x(a + €) = 0, and if x(a + €) # 0 forall a + € € [a, a + €], then

a+te
at+e ate
j Z pi(a+e)A(a + e)J- Y/ (a+e)A(a+e) = 4exp —f Z |ll}#(a+s) (—aj(a + e))| A(a+¢€)]. (3.21)
a J “ @
Proof. By the variation of parameters formula (Theorem 2.6), we write

a+2e
x(a+e€)= Z e_a].(a, a+ 2¢e)x(a) + f z e_a].(a +€,a+26e)pj(a+ e)u(a+e)A(a+e€). (3.22)
j * j

Put € = 0 and use x(a) = 0 in (3.22). Then

[x(a + 2¢€)| < f“ : Z |e_a].(a +e¢a+ 26)| Bi(a+e)|u(a + €e)|A(a + ¢). (3.23)
é j

For € = 0, we use (2.15) and (2.13) to obtain
Z |e_aj(a+e,a+26)| SZ E_aj(a+26,a+e) SZ E_a].(a+26,a),
j j j

which together with (3.23) shows

a+2e
|x(a + 2€)| < Z E_a].(a + 2¢, a)f Z Bi(a+€e)|u(a + €)|A(a + e). (3.24)
j * j



3171 International Journal of Science Academic Research, Vol. 02, Issue 11, pp.3166-3178, November, 2021

Next, putting € = 0 and using x(a + 3€) = 0 in (3.22) leads to
a+3e

|x(a + 2¢)| < Z |e_a].(a +e€a+ 26)| Bi(a + e)|u(a + €)|A(a + e). (3.25)

a+2e

For € = 0, we use (2.14) and (2.13) to obtain

Z |e_aj(a+26,a+e)| SZ E_aj(a+26,a+e) SZ E_a].(a+3e,a+e),
j j j
which together with (3.25) shows

a+3€

|x(a +€)| < z E_a].(a +3¢,a+ e)J- z Bj(a + 2¢e)|u(a + 2¢)|A(a + 2¢). (3.26)
j

Now let
|x(a +€)| _ |x(a+€)|
Q= Z E_q; E_q(a+ea) Q= Z E_q(a+3€a+ €)

Then (2.18), the arithmetic-geometric inequality, (3.24), (3.26), and (2.13) yield

+ + +
y _kerol _y (@ +e)| Pl
j /E_aj(a + 3¢,a) j \/E_a.(a +3€,a+ e)E_a].(a +€,a)
_Z |x(a + €)| |x(a + €)|
2Ea(a+ea) 2Ea(a+36a+e)

E_o(a+e€a) f ﬁ] (a + 26)|u(a + 2¢)|A(a + 2¢)
= Z 2E_a (a+¢€a)

a+3e

E_o(a+3€a+ e)J .. Bila+2e)|ula+2e)lAla+ 2¢)
+Z 2E_a.(a+36,a+6)

f“ ) Z Bi(a +36)|u(a + 3€)|Ada + 3€)

and thus, by the Cauchy-Schwarz inequality (see[4, Theorem 6.15] ),

2

4x2(a + 5) a+3e
Z E_g(a+3ea) If Z Bj(a + 3e)lu(a + 3€)|A(a + 3¢)

a+3e

a+3e
f Z Bj(a +3e)A(a + 3€)f Bj(a + 3e)u*(a + 3€)A(a + 3¢). (3.27)

Next, we use the time scales product rule (see [4, Theorem 1.20]) and (1.1) to calculate
(xw)? = xu + x%ul = Z (ajx® + Bju)u — Z (vjx° + qju)x° = Z Biu? —vy;(x?)?.  (3.28)
j j j

Hence

a+3e
= f Z {Bi(a +2e)u*(a + 2¢) —y;(a + 2€)(x°(a + 2¢))*}A(a + 2€)
j

and thus

a+3e a+3e

a+3e 2
f Z Bila+ 2e)u?(a+ 2¢€)A(a + 2¢€) = f Z yi(a+ 26)(x"(a + 26)) Ala + 2¢) < f Z y*(a + 26)(x”(a + 26)) A(a + 2¢€). (3.29)



3172 International Journal of Science Academic Research, Vol. 02, Issue 11, pp.3166-3178, November, 2021

Using (3.29) in (3.27), we find

a+3e

4 2 a+3e
Z E_ax(cgcf:S?a) f Z Bj(a+3e)A(a + 36)[ ¥ (a + 3€)x*(o(a + 3€))A(a + 3¢). (3.30)

Pick now t* € [a,o(a + 3€)] such that

[x(t)| = max [x(a +€)] > 0.

asa+eso(a+3e€)

As in [8], by treating a + 3¢ left-scattered and left-dense seperately, (3.30) yields

4x2(t) 22 a+3e
Z E, (a+3€ a)_ (t)f (a+36)(a+36)A(a+36)f

a+3e

z Y; *(a +3¢€)A(a + 3¢),

which clearly results in (3.21).
We can show the following (see [13])

Theorem 3.11. Let a,a + 3€ € T* with o(a) < a + 3€. Assume (1.6) and (3.20). If (1.1) has a real solution (x,u) such that
x(a) = 0 and x*(a + 3€) < 0, then

o(a+3€) +3¢ a+3e
j Z Bi(a+36€)Aa + E)f 3 Z yH(a+e)Aa+e) = dexp —f Z butase (~i(a + )| Aa+e) |.(331)
« 7 s T

Proof. We proceed as in the proof of Theorem 3.10 and arrive at (3.24). Replacing a + 3¢ in (3.22), we obtain

x(a+e)= Z e_aj(a +3¢,a + €)x(a + 3¢) — fa+36 Z e_a].(a +2¢,a+¢e)pj(a+ 2¢e)ula + 2¢e)A(a + 2¢). (3.32)
j a+te }

Multiply the first equation in (1.1) by u(a + €) and use x° = x + ux”® (see [4, Theorem 1.16]) to obtain

- Z ula+e)aj(ate) |x°(ate)=x(ate)+ Z Bi(a +e)ula + e)ula + e). (3.33)
j j

Let

" o x*(a+36)>0
3T x2(a + 3€) '

Then (3.33) yields

x(a+ 3¢€) = T 12 Bj(a +3€e)u(a + 3€)u(a + 3e), (3.34)

and hence (3.32) leads to

x(a+e)=

1
——Z Bj(a+3e)u(a+3e)u(a +3e)e_q . (a+ 3€,a+€)
ka+3€ +1 - J

j

a+3e
— f Z e_a].(a +2¢,a+€)fj(a+ 2¢e)u(a + 2€)A(a + 2¢)
ate ;

and thus, by (2.14) and (2.13),

a+3e

Bi(a+3e)ula + 3e)|ula + 3¢)| + f Bi(a+ 26e)|ula + 2¢)|A(a + 2¢)

ate

1
|x(a + €)| SZ E_a).(a+3e,a+e) [m

o(a+3e€)

= Z E_a).(a +3¢,a+¢€) (Bj)a+36(a + 26)|u(a + 2¢)|A(a + 2¢) (3.35)

ate
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(use [4, Theorem 1.75]), where

Z Bi(a+e), e+0
Y Baateo={" 4
i —_— (a+3¢€), e=0.
] kmEHZ Fi@+3¢)
Note that since 1/(kg13. + 1) < 1, we have
Z Bassela+e) < Z Bi(a+e)foralla+te€eT, (3.36)
j Jj

As in the proof of Theorem 3.10, applying the arithmetic-geometric inequality with
|x(a+e)| [x(a + €)|
&= Z E_ Q= Z
a (a+e a)’ i E_aj(a+3e,a+e)
j

and using (2.18), (3.24), (3.35), (2.13), and the Cauchy-Schwarz inequality, we get

2

—a; (a+36 a)~

fa(a+3e)z (ﬁ, s (a+2¢e)A(a + 26)f

o(a+3€)

o(a+3€)
< f Z Bi(a + 2e)A(a + 26)-[
a j “

where we also have used (3.36). On the other hand, integrating (3.28) from a to a + 3¢ and using (3.34) yields

4x? o(a+3e€)
Z - e lf Z (B))gysc(@ + 2€)lula + 26)1A(a + 26)

o(a+3€)

Z (B1) 5. (@ + 26)u*(a + 2€)A(a + 2€)
j

Z (ﬁj)a+3s(a + 2e)u*(a + 2e)A(a + 2¢), (3.37)
j

a+3e
fa Z Bj(a + 2e)u*(a + 2¢€)A(a + 2¢€) + ﬁz Bj(a + 3€)u(a + 3e)u®(a + 3¢)

fa+3€ Z yj(a + 26)(x”(a + 26)) A(a + 2¢),

and hence

o(a+3€) a+3e
f z (B)a+se(a + 2e)u?(a + 2€)A(a + 2¢€) = f Z yj(a + 26)(x"(a + 26)) A(a + 2¢)

j

a+3e
< f Z yj (@ + 26)(x°(a + 26))°Aa + 26). (3.38)
¢ j

Combining (3.37) and (3.38), we arrive at (3.31).
Now we can show the following (see [13]).

Theorem 3.12. Let a,a + 3€ € T* with (a) < a + 3e. Assume (1.6) and (3.20). If (1.1) has a real solution (x,u) such that
x*(a) < 0and x(a + 3¢€) = 0, then (3.21) is satisfied.

Proof. As in the proof of Theorem 3.10, we see that (3.26) is satisfied. Replacing a in (3.22), we obtain

s Z o (erat @+ fa+€ z e_q;(a+2¢6,a+e)f;(a+2e)ula+ 2e)A(a+ 2e). (3.39)
j @
Let
. x(a)
ket =~ 3 >
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From (3.33), we have

x(a) = Z B (@u(@u(a). (3.40)

k+1

Using (3.40) in (3.39) gives

x(a+e€)=— kot 12 ,Bj(a)/l(a)u(a)e_aj(a, a+e)+ faﬁ z e_a].(a +2¢,a + €)pj(a + 2¢e)ula + 2¢€)A(a + 2¢)
j j

G 1)2 B @u@u@e_y (@ a+e)
+ _a;(@a+26,a+€e)Bi(a+2¢e)ula + 2e)A(a + 2¢)

L(a)Z e_q;(a €,a+e)pi(a eu(a €)A(a €
= f Z e_a].(a + 2¢,a+ e)(,b’j)a(a + 26)u(a + 2¢)A(a + 2¢), (3.41)

“@
Where

Z Bi(a+e), e+0
J

Blaa+er =17,
Z —> B@, e=0.
j

Note that k,/(k, + 1) < 1 implies

Z Bjlala+e) < Z pij(a+e) forall a+e€T. (342)
J

J

From (3.41), using (2.15) and (2.13), we get
ate
|x(a+¢€)| < Z E_a].(a +¢, a)f Z (Bala + 26)|u(a + 2€)|A(a + 2¢). (3.43)
j g
As before by employing the arithmetic-geometric inequality with
|x(a +6)| |x(a + €)|
Q= Z Q= z
Ea(a+e a)’ i E_a].(a+36,a+6)
j
and then using the Cauchy-Schwarz inequality, we get

4 2 a+3e
Z - x(;t:-gi)a) lf z (3} weae (a+ 2¢e)|u(a + 2¢)|A(a + 2¢)

a+3€e a+3e

f Z (ﬁj) (a+ 26€)A(a + ZE)J- (ﬁj)a(a + 26)u?(a + 2¢e)A(a + 2¢)

2

a+3e

a+3e
< f Z Bj(a + 2¢e)A(a + 26)[ (ﬂj)a(a + 2e)u?(a + 2¢)A(a + 2¢), (3.44)
a Jj a

where the last inequality follows from (3.42). Now from (3.28), we see that

a+3e a+3e

f Z yi(a + 2e)(x?(a + 2€))%A(a + 2¢) = f Z Bi(a + 2e)u?(a + 26)A(a + 2¢) —

Bj(@u(a)u?(a)

a+3e
= (a+2e)u®(a+2¢e)A(a + 2¢ +(1—
J::'(a) Z 'B] ( ) ka +1

)Y B@u@w@
J

a+3e

-/ D Buat 200+ 29800+ 20
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and hence
a+3e a+3e 2

f Z (ﬁj)a(a + 26)u?(a + 2€)A(a + 2¢€) < f Z )/;“(a + 26)()60(61 + 26)) A(a + 2¢). (3.45)
a ] a ]

Combining (3.44) and (3.45), we see that (3.21) holds.

Theorem 3.13. Let a,a + 3¢ € T* with g(a) < a + 3e. Assume (1.6) and (3.20). If (1.1) has a real solution (x,u) such that
x*(a) < 0and x*(a + 3€) < 0, then (3.31) is satisfied.

Proof. The proof can be easily accomplished by combining the arguments in the last two theorems.
From Theorems 3.10 — 3.13, we easily deduce the following theorem.

Theorem 3.14. Let a,a + 3¢ € T* with o(a) < a + 3e. Assume (1.6) and (3.20). If (1.1) has a real solution (x,u) with
generalized zeros at a and a + 3¢, and if x(a + €) # 0 forall a + € € [a, a + 3€]r, then (3.31) is satisfied.

By using similar arguments, we will next show that inequality (1.4) is valid without the condition (1.2). The result follows from
the following counterpart of Theorem 3.14. Since the condition (1.6) is dropped, we deduce that (1.2) in Theorem 1.1 is
superfluous. The proof is relatively less complicated because no exponential bound functions are involved. The main difference is
the use of

a+te

x(a+¢€)=x(a)+ f‘“e Z aj(a + 26)x(a(a + 26))A(a + 2¢) + J- z Bi(a + 2e)u(a + 2¢)A(a
a . a j

j
+ 2¢) (3.46)
instead of the variation of parameters formula (3.22). The equality (3.46) simply follows from integrating the first equation in

(1.1).
We can show the following (see [13]).

Theorem 3.15. Let a,a + 3€ € T* with d(a) < a + 3€. Assume (1.3). If (1.1) has a real solution (x, u) with generalized zeros at
aand a + 3¢,and if x(a + €) # 0 forall a + € € [a, a + 3€]r, then

a+3e g(a+3€) % a+3e %
f Z aj(a+e)A(a+e€)+ Z U Bj(a + €)A(a + E)] U Y (a+eA(a+e)| =2 (3.47)
a ] ] a a

Proof. We will only give the proof when x(a) = 0 and x*(a + 3€) < 0, i.e., the case contained in Theorem3.11. From (3.46), we
write that

ate

x(a+e€)= faﬂ Z aj(a+ Ze)x(a(a + 26))A(a + 2¢) + f Z Bi(a + 2e)u(a + 2¢e)A(a + 2¢) (3.48)
a ] a ]

And

a+3e

Z Bi(a +2e)ula + 2e)A(a + 2¢). (3.49)
+e 55

a+3e

x(a+e)=x(a+3e)—f

a+e

Z aj(a + 26)x(a(a + 26))A(a + 2¢) — f

7 a

From (3.48), we have
a+te ate
|x(a+¢€)| < J- Z |aj(a +26)||x(o(a + 26))|A(a + 2¢) + f Z Bi(a + 2¢e)|u(a + 2¢€)|A(a + 2¢). (3.50)
a } a ]
As in the proof of Theorem 3.11, with k3. defined as there, we obtain (3.34). Using (3.34) in (3.49) leads to

x(a+e€)= _Tl-i-lz Bi(a +3e)u(a + 3e)u(a + 3¢) — f‘“ € Z 0@+ 26)x(o(a + 26)A(a + 26)
j ate ]

— J-a+3ez Bi(a +2€)u(a + 2¢e)A(a + 2¢)
ate }
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and hence

a+3e
[x(a+e€)| < ka+3e n 12 Bij(a +3e)u(a + 3e)|ula + 3e)| + f+e Z laj(a + 2€)| |x(a(a + 26))|A(a + 2¢)
j

a+36
f D Bla+20)lu(a+ 208G + 26)
are 7y

< f::ez |a;(a + 2€) Il x(a(a + 26))[Aa + 2¢)
J

+€

o(a+3€)
+ f z (8)..,,.(a+26)ula + 20)Ada + 26), (3.51)
J

where (B)q+3e is defined as in the proof of Theorem 3.11. Note that 1/(k,13. + 1) < 1 implies that (3.36) holds. By using the
inequalities (3.50) and (3.51), (3.36), and the Cauchy-Schwarz inequality, we have

a+3e a(a+3e)
20x(a + )| < f Z | (@ + 2€) Il x(o(a + 26))|Ala + 2¢) + f Z (8),,,.(a+26)[ula + 26)|A(a + 2¢)

j

IN

a+3e
f Z |a]-(a +2¢) l x(o(a+ 26))|A(a + 2¢)
“ j

1
o(a+3€) 2

o(a+3e) 2
+ Z U Bi(a + 2e)A(a + 26)] U (ﬁj)a+3s(a +26)u?(a + 26)A(a+ 2¢)| . (3.52)
j a a
On the other hand, (3.38) remains valid. In view of (3.52) and (3.38), we arrive at (3.47)

Remark3.16. If the condition (3.20) is replaced by

Z Bi(a+e)=0 forall a+e€€laa+3ely
j

with
Z Bj(a+¢€) #0 onanysubinterval ] c[a,a+ 3€],
then inequalities (3.31) and (3.47) become strict. In case T = R, we thus recover [10, Theorem 2.4] from Theorem 3.14 and
Theorem 3.15.
Remark 3.17. Assume (1.2). If u(a + €) = 0, then
Yu+re)(—aj(a+€)) = —aj(a+e)

and if u(a + €) > 0, then

log |1 —pu(a+€e)aj(a+e€)| log (1 — u(a + e)a;(a +¢€))
Z lpp.(a+e)( a](a+6)) _Z M(a+€)] =Z u(a+e)]

=—Z a](a+e)+z log(l—u(a+e)a](;1(:-|e_)z)+u(a+e)a](a+e) _Z w(a+e)
J J

log (1 +x) <xforallx = —1.

Hence we conclude

Z Yu(a+e) (—aj(a + e)) < —z aj(a+e) forall a+e€T. (3.53)
Jj

j
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In case of aj(a + €) < 0 forall a + € € T, (1.2) is satisfied and (3.53) implies
Z |1/)u(a+e)(—dj(a + 6))| < Z |a]-(a + e)|,
J j
and so (3.31) implies
a+3e

f:(aHE) Z Bi(a+e)A(a+e) fa+3€ Z ¥ (a+e)A(a+e€) =4exp (‘f
j ¢ J a

In view of (2 —17)? < 4e~" for n € (0,2), by taking

|a]-(a + 6)|A(a + E)). (3.54)

a+3e

17=J- z laj(a + €)|A(a + €),
“ j

we see that the Lyapunov-type inequality (3.47) follows from (3.54). So we may say in this case that the inequality (3.31) is better
than (3.47). In the special case T = R, the inequality (3.31) implies (3.47) in view of 3};  Yua+e)(—qj(@a+€)) =—%; aj(a+
€).

3. Disconjugacy Criteria
We give a simple application (see [13]). Consider the Hamiltonian system(1.1) on [a, a + 3€]r.

Theorem 4.18. Let a, a + 3e € T* with 6(a) < a + 3€. Assume (1.6) and (3.20). If

a+3e

J-a(a+3e) Z 'Bj(a LM+ f
a 7 a

then the system (1.1) is relatively disconjugate on [a, a + 3€]y.

)’j+(a +e)A(a+¢€) <4dexp| — fa+3€ Z |1,[)M(a+g) (—aj(a + e))| Ala+e€) ]|, (4.55)
@ j

Proof. Suppose that system (1.1) is not relatively disconjugate on [a,a + 3€]r. Then there exists a real solution (x,u) with x
nontrivial and such that x(a) = 0 and that x has a next generalized zero at ¢ € (a,a + 3€]t. We have either x(c) = 0 or x*(c) <
0. Applying Theorem 3.10 and Theorem 3.11, we see that

a(c)
j Z Bi(a+e)A(a + e)f Y/ (a+e)A(a+e) = 4exp —f Z |¢H(a+e) (—aj(a + e))| A(a+¢€) ),
a . @

and hence

a+3e

o(a+3€)
f Z pila+e)A(a+ e)f
a j ¢

The inequalities (4.55) and (4.56) contradict each other.

a+3e
¥ (a+e)A(a+e) =4exp (—f Z |1,[)M(a+6) (—aj(a + e))| Ala + e)) .(4.56)
a J

In a similar manner, we can show the following theorem (see [13]).

Theorem 4.19. Let a, a + 3¢ € T* with g(a) < a + 3¢€. Assume (1.6) and (3.20). If
1
2

a+3e o(a+3e€) % a+3e
f Z aj(a +e€)A(a+e)+ Z U Bi(a +€e)A(a + e)] U yii@a+eh(a+e)| <2, (457)
a ] ] a a
then the system (1.1) is relatively disconjugate on [a, a + 3€].

Corollary 4.20. Let a, a + 3¢ with g(a) < a + 3€. Assume (1.2) and (3.20). If

1

at3€ A(a +€) o(a+3€) % at3e . 1
-[1 lua + el +ZU‘1 Bj(a+6)A(a+e)] Ua 14, (a+6)A(a+e)]
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Then for A(a + €) = 0, f;(a + €) = Oory;(a + €) = 0 or vice versa.

Remark4.21. Note that the second-order equation

Z (pj(a+ e)xA)A + Z q;(a+e)x? =0 (4.58)
j j

can be expressed as an equivalent Hamiltonian system of type (1.1) with

Z aj(a+e€) =0, Z ,Bj(a+€)=z ﬁ, Z yj(a+e)=z gj(a+e).
j j j j

)

Therefore, one can easily rewrite the corresponding theorems for (4.58).

Remark 4.22. In the special case T = Z, our results coincide with the corresponding ones in [11], where additionally the stability
criteria are also given in connection with Lyapunov-type inequalities when the system is periodic. The stability problem for (1.1)
on an arbitrary time scale has been studied in [12].
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