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Abstract 
 

The method of Lobachevski permits to determine both real and complex roots of nonlinear algebraic equations with real coefficients. Its 
advantages are that it is not necessary to priory search the intervals of appurtenance of the roots, it simultaneously gives all the roots, reducing 
the computational time when using  other existing iterative methods, at last,  its reliability during operational works is easy. 
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INTRODUCTION  

 
Numerical treatments of empirical data usually lead to the 
resolution of nonlinear algebraic equations of the form  
 
anx

n + a1x
n-1 + a2x

n-2 + … + an-1x + an = 0,                              (1) 
 
where a1, i =0, 1, 2, …, n are real coefficients not all zeros. n - 
the degree of the equation. 
 
Finding roots of such equations is one of the oldest problems 
of algebra. Algorithms for n = 1 and n = 2 have been 
elaborated. For n ≥ 3 things begin to be complicated and only 
numerical methods can be very helpful. Between others, the 
methods of tangents and secants are the most encountered, 
(Burden and Faires, 2005; Melentev, 1962; Patel, 1994). Their 
common particularity is that they permit to find only one 
solution, meaning that the method must be repeated n times for 
the n roots. An important problem to be priory solved is the 
finding of the interval in which the root belongs and this is not 
always an easy task. This article exposes a method elaborated 
by Lobachevski in 1834, ameliorated by Graeffe in 1837 and 
extended for finding complex roots by Hanke in 1841, 
(Lobachevsky, 1948). Its actual form was given by Krylov. It 
is also called the method of separation of the roots. It offers 
many advantages, between others, the unnecessary finding of 
the intervals of appurtenance of roots, the simultaneously 
finding of all the roots, both real and complex ones and the 
shorter time of execution. Unfortunately, the method of 
Lobachevski seems to be neglected today. With the 
development of science, more complicated equations of form 
(1) are frequently encountered and their roots could only be 
found if using the method of Lobachevski, whence the 
importance of this paper.  This work has five sections. The first 
one is this introduction to the problem to be solved. The 
second one exposes the principle of the methods of 
Lobachevski, one for real and distinct roots and another for 
both real and complex roots. Implementations of both methods 
are given in section three and the conclusion in section four. 
The references in alphabetic order are in section five. 
 
*Corresponding Author: Njipouakouyou Samuel 
Faculty of Sciences, University of Dschang – Cameroon 

 

PRINCIPLE OF THE METHOD 
 

Consider a nonlinear algebraic equation of power n, n 3: 
f(x) = a0x

n + a1x
n-1 +......+ an-1x + an = 0,                         (2) 

 
with all nonzero real coefficients ai, i = [0,n]. 
 
Let x1, x2, ...  ,xn be the n roots of (2) with: 
x1x2 --- xn,                                                        (3) 
 
where xi[1,n] is the module of xi. 
 
Equation (2) can be repeatedly transformed to new nonlinear 
algebraic equations such that their roots are the squares of the 
corresponding roots of the preceding equation. Thus, if 3 and 4 
were roots of (2), then after the first transformation the roots of 
the new equation should be 32 and 42 and after k 
transformations, 3m and 4m with m = 2k. The ratios of the roots 
of the initial and final equations are respectively ¾ = 0.75 and 
(3/4)m. For instance, if k = 5, m = 32, the second ratio should 
be 10-4 times smaller than the initial one. Thus, when k 
increases, the roots with a lowest module should be neglected 
compared to the one with a highest module. This is the 
principle of separation of the roots of an equation.  
 
These transformations are made as follows. 
 
Putting xi, i = 1, ...,  n, the roots of (2). We may also write: 
f(x) = a0 (x-x1) (x-x2) … (x-xn).                          (4) 
 
From (2-3) we deduce f(-x): 
 

f(-x) = a0 (-x-x1) (-x-x2) … (-x-xn)  
= (-1)n a0 (x +x1) (x+x2) … (x+xn).                                         (5) 
 
Multiplying (4) and (5) gives: 
 

f(x)f(-x) = (-1)n a0
2(x²-x1²)(x²-x2²) … (x²-xn²)                         (6) 

 
Putting y = -x² in (5) gives equation (y) with: 
 

(y) = (-1)n a0
2(-y-x1²)(-y-x2²) … (-y- xn²)  

= a0
2(y+x1²)(y+x2²) … (y+xn²) = 

= a0
(1)yn + a1

(1)yn-1 + … + an-1
(1)y + an

(1) = 0.            (7) 



The roots of (7) are -x1², -x2², …, -xn². 
(5) can be given the form:  
 
f(-x) = a0x

n(-1)n + a1x
n-1(-1)n-1 + … + an =  

= (-1)n[a0x
n - a1x

n-1 + … + an(-1)n].             (8) 
 
Taking (8) into consideration, (6) becomes: 
 
f(x)f(-x) = (-1)n[a0

2x2n - (a1
2-2a0a2)x

2n-2 + (a2
2-2a1a3 + 2a0a4)x

2n-4 + … + (-1)n an
2] 

 
= (-1)na0

2x2n + (-1)n-1 (a1
2-2a0a2)x

2(n-1) + 

+ (-1)n-2 (a2
2-2a1a3 + 2a0a4)x

2(n-2) + … + an
2  = 0.                (9) 

 
Consequently, (7) becomes: 
 
(y) = a0

2yn + (a1
2 - 2a0a2)y

n-1 + (a2
2 - 2a1a3 + 2a0a4)y

n-1 + 
+ … + an

2 = 0.                                                                     (10) 
 
(7) and (10) give the relationships between former and new 
coefficients: 
 
a0

(1) = a0
2, 

a1
(1) = a1

2- 2a0a2, 
a2

(1) = a2
2- 2a1a3 + 2a0a4,                                       (11) 

………………………., 
an

(1) = an
2. 

 
(11) is the algorithm of computation of new coefficients ai

(1), i 
ϵ [0,n], after the first transformation. This algorithm could be 
generalized for any transformation. Thus, if we are at the k-th 
transformation, (11) take the next form: 
 
a0

(k) = (a0
(k-1))2 

a1
(k) = (a1

(k-1))2 -2 a0
(k-1)a2

(k-1)   
a2

(k) = (a2
(k-1))2 -2 a1

(k-1)a3
(k-1) + 2 a0

(k-1)a4
(k-1)                       (11a) 

………………………., 
an

(k) = (an
(k-1))2 

 
Formulas (11a) tell us that the first and last coefficients of the 
transformed equation are just the squares of the corresponding 
ones from the preceding equation, i.e.  
 
a0

(k) = (a0
(k-1))2 and an

(k) = (an
(k-1))2  

 
and the second and before last coefficients are obtained 
subtracting from the squares of their corresponding 
coefficients the double products of their neighbouring 
coefficients, i.e.  
 
a1

(k) = (a1
(k-1))2 -2 a0

(k-1)a2
(k-1), and an-1

(k) = (an-1
(k-1))2 -2 an-2

(k-

1)an
(k-1). The remaining coefficients are calculated subtracting 

from the squares of their corresponding coefficients the double 
products of their closest backward and forward coefficients 
and adding the double products of their own closest backward 
and forward coefficients, i.e.  
 
ai

(k) = (ai
(k-1))2 -2 ai-1

(k-1)ai+1
(k-1) + 2 ai-2

(k-1)ai+2
(k-1),  i = 2, ..., n-2.  

 
These computations are repeated until all the double products 
are negligible as null, indicating that the precision has been 
reached. To proceed easily and faster while avoiding errors at 
the same time, computations should be done according to the 
scheme in Table 1. To reduce round-off errors, computations 
should be done with at least two more significant digits above 
the given precision. 

 

Table 1. Intermediary computations of transformed coefficients 
 

k a0
(k) a1

(k) a2
(k) .......... an

(k) 

0 a0 a1 a2 ........... an 

 a0
2 a1

2 

- 2a0a2
 

 

a0
2 

- 2a1a3 
+2a0a4 

 an
2 

1 a0
(1) a2

(1) a2
(1)  an

(1) 

.......... ............ ............ ........... .......... ........... 

 
When finding the roots of (2), the two more encountered cases 
are: a) all the roots are different real numbers; b) some of them 
are complex numbers. Let us examine each case. 
 
a) All the roots are real and different.  
 
At the k-th transformation, recall that m=2k, the next system of 
relationships between the roots and coefficients of the given 
equation based on the theorem of Vieta can be established: 
 
��

(�)

��
(�) = ��

� + ��
� + … + ��

� 

= ��
� �1 + �

��

��
�

�

+ ⋯ + �
��

��
�

�

�, 

��
(�)

��
(�) = ��

���
� + ��

���
� + … + ����

� ��
� 

= ��
���

� �1 + �
��

��
�

�

+ ⋯ + �
������

����
�

�

�,          (12) 

��
(�)

��
(�) = ��

���
���

� + ��
���

���
� + … + ����

� ����
� ��

� 

= ��
���

���
� �1 + �

��

��
�

�

+ ⋯ + �
����������

������
�

�

�, 

……………………………………………………., 
��

(�)

��
(�) = ��

���
���

� …��
� , 

 
Based on (3) and on the fact that m is generally high, the 
following equalities can be deduced: 
 

��
� = 

��
(�)

��
(�) , 

��
���

� = 
��

(�)

��
(�) , 

��
���

���
� =  

��
(�)

��
(�) ,                                                   (13a) 

……………………….. 

��
���

���
� ………. ��

� = 
��

(�)

��
(�) , 

 
whence: 
 

��
� = 

��
(�)

��
(�) , 

��
� = 

��
(�)

��
(�) , 

��
�= 

��
(�)

��
(�) ,                                                   (13b) 

……………………….. 

��
� = 

��
(�)

����
(�)  , 

 
System (13b) gives at all the searched roots of (2) affected to 

power m. As m is an even number, xi = ±���
�, i = 1, 2, .., n. 

Substituting each value in (2) enables us to determine which 
sign should be considered. 
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b) Some roots are conjugate complex numbers 
 
Let us divide both members of (2) by a0≠ 0. We obtain the 
next expression called the monic form of (2) as b0 = 1: 
 
xn + b1x

n-1 + … + bn-1x + bn = 0.                        (14) 
 
If (14) has only a couple of conjugate complex roots, say x2 
and x3, so the remaining n-2 roots are real numbers which can 
be noted at the k-th transformation by i = xi

m, i = 1, 2, ..., n-2, 
the two complex ones been ��

� and ��
�. So based on (13a), we 

may write the next relations:  
 
b1 = 1, b2 = 12, b3 = 123, ..., bp = 123... p, p = n-2,        (15a) 
 
for the n-2 real roots and: 
 
��

� = ρ1(cosψ1 + i sinψ1), ��
� =  ρ1(cosψ1 - i sinψ1),           (15b) 

 
for the two complex roots. 
 
From (15a), we have: 
 

1 = b1,  2 = 
��

��
, 3 = 

��

��
, ..., p = 

��

����
,                       (16a) 

 
Whence the real roots given by: 
 

xi = ± ���
� , i = 1, 2, ..., p.                                     (16b) 

 
Let us find the complex roots. As x2 and x3 are complex, it 
comes that the second real root, 2, corresponds to x4

m. Thus 
based on (3), (12), and (15a), we may write:  
 
 ��

� = 1, 
��

� = ρ1(cos1 + i sin1),                                                      (17) 
��

�= ρ1(cos1 - i sin1),   
��

� = 2,  
............................................ 
 
Recalling that: 
 

 x2
m + x3

m = 2ρ1cos1= 2 ρ1cos1,      (a)  
x2

mx3
m = ρ1

2 = r2m,      (b) 
                                                                                            (18) 
Taking into account (17) and (18), (15a) becomes: 
 

b1 = 1,  
b2 = x1

mx2
m + x1

mx3
m = 12 ρ1 cos1, 

b3 = x1
mx2

mx1
m = 1ρ1

2,                         (19) 
b4 = x1

mx2
mx1

mx4
m = 1ρ1

22, 
......................................... 
 
From the first and third equations of system (19), we have the 
module r of the complex roots: 
 

��

��
 = ρ1

2, r = ���
��
.                                                                 (20) 

 
From the first and second equations of system (19), we have: 
 
��

��
 = 2 ρ1 cos1 = 2 ρ1 cosm�                                      (21) 

 
Recalling that: 
 

b1 = - (x1
m + 2r1cosφ1 + x4

m + … + xn
m),          (22) 

and considering (21), the argument of the complex roots is 
easily found. 
 
Suppose that (2) has more than one couple of conjugate 
complex roots, say two such roots. In this case, we have two 
conjugate complex numbers, i.e. four complex roots. We must 
form a system of two equations (similar to (22)) to solve for 
the arguments of the complex roots. Their modules are 
obtained using formula similar to (20). 
 
To obtain the system of the two equations for the arguments, 
we proceed dividing both members of (2) by a0x

n ≠ 0: 
 
�

��
 + 

����

��
.
�

�
 + 

����

��
.

�

�� + … + 
��

��
.

�

���� + .
�

��  = 0.         (23) 

 

Putting  
�

�
 = y, we have: 

 

yn + 
��

��
 yn-1 + 

��

��
 yn-2 + … + 

����

��
 y + 

�

��
 = 0.          (24) 

 
Based on the formula of Vieta we have: 
 
��

��
 = - (

�

�

 + 
�

�

  + … + 
�

�

 + 
�

��(��� ���� ��� �� )
 + 

�

��(��� ��� � ��� �� )
 + 

�

��(��� ���� ��� �� )
 + 

�

��(��� ���� ��� �� )
), j = 1, 2, ..., n - 4         (25) 

 
Recalling that: 
 

�

� (��� ��� ��� � )
 + 

�

� (��� ��� ��� � )
 = 

� ��� �

�
.                       (26) 

 
and based on (26), expression (25) becomes:  
 
��

��
 = - (

�

�

 + 
�

�

  + … + 
�

�

 + 
� ��� ��

��
.+

� ��� ��

��
 )                       (27)  

 
Thus, the system equations to solve for the arguments are: 
 
an-1 = - (1 + 2 + … +  j + 2r1 cosφ1 + 2r2 cosφ2), 
 
��

��
 = - (

�

�

 + 
�

�

  + … + 
�

�

 + 
� ��� ��

��
.+

� ��� ��

��
 ).          (28) 

 
Knowing the cosines and modules of the two couples of 
conjugate complex roots, it becomes easier to find these roots 
solving two quadratic equations of the form x2 – 2rcosφx + r2 = 
0 by the quadratic formulas. 
 

IMPLEMENTATION OF THE METHODS 
 
These methods are implemented on equations obtained during 
practical works on the numerical methods frequently used in 
weather forecast at the Hydrometeorological Institute of 
Leningrad, State Hydrometeorological University of Saint 
Petersburg, today, Russia. 
 
Case of real and distinct roots 
 
Let us solve the following equation:  
 
f(x) = 1.23x5 - 2.52x4 - 16.1x3 + 17.3x² + 29.4x - 1.34 = 0   (29) 
 
The computations in Table 2 are stopped for k = 6, i.e. m = 2 k 
= 26 = 64 as at this stage, all the double products, 2ai-1ai+1 and 
2ai-2ai+2, are at most 10-4 times lower than the main terms, ai

2. 
Using Table 2, (13b) gives: 
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x1

64
�.����·����

�.����·��� ,  x2
64

�.����·����

�.����·����, x3
64

�.����·����

�.����·����,   
 

x4
64

�.����·����

�.����·����,  x5
64

�.����·���

�.����·���� 

 
whence:  
x1 4.0657; x2 2.9917; x3 1.9587;  x4 1.0284; x5 0.0445.  

 

By substitution in the initial equation we have the searched 
roots:  
 

x1 4.0657; x2 - 2.9917; x3 1.9587; x4 - 1.0284; x5 
0.0445. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case of real distinct and complex roots 
 
Let us solve the following equation in its monic form: 
 
x4 +  0.68342 x3 + 1.95562 x2 + 0.37654 x + 1.79420 = 0   (30) 
 
This equation of degree four must have four roots. 
Intermediary computations are presented in Table 3.  
 

The variations of coefficients ��
(�)

 and ��
(�)

in Table 3 are not 
homogeneous as the double products of the corresponding 
coefficients remain of the same order as the square of the main 

Table 2.Table of intermediary computations of the roots of (3-1) 
 

k a0 a1 a2 a3 a4 a5 

0 1.23 -2.52 -16.1 17.3 29.4 -1.34 

 1.5129 6.3504 
+39.6060 

2.5921     102 
+0.8719   102 
+0.7232   102 

2.9929       102  
+9.4668     102 

+0.0675     102 

8.6436      102 

+0.4633    102 
1.7956 

1 1.5129 0.4596   102 4.1873     102 1.2527       103 9.1072      102 1.7956 

 2..2884 2.1120   103 

-1.2670  103 
1.7533     105 
-1.1514    105 

+0.0276   105 

1.5693       106 

-0.7627      106 

+0.0002     106 

8.2942      105 

-0.0450     105 
3.2242 

2 2.2880 0.8450   103 0.6295     105 0.8068       106 8.2492      105 3.2242 

 5.2391 7.1404   105 

-2.8815  105 
3.9622     109 
-1.3635    109 
0.0040     109 

6.5092       1011 

-1.0385      1011 
+0.0000     1011 

6.8049     1011 

0.0000     1011 

 

10.3955 
 

3 5.2391      4.2589   105 2.6027     109 5.4707       1011 6.8049    1011 10.3955 

 2.7448  101 

 
1.8138   1011 

-0.2727  1011 
6.7740     1018 

-0.4660    1018 

+0.0000   1018 

2.9930       1023 

-0.0354     1023 

+0.0000    1023 

4.6307    1023 

-0.0000  1023 
1.0807 102 
 
 

4 2.7448  101 1.5411   1011 6.3080     1018 2.9576      1023 4.6307   1023 1.0807   102 

 7.5340  102 

 
2.3750   1022 

-00346   1022 

 

3.9791     1037 

-0.0091    1037 

+0.0000   1037 

8.7474      1046 

-0.0001    1046 

+0.0000   1046 

2.1443    1047 

-0.0000   1047 

-0.0000   1047 

1.1678   104 
 

5 7.5340  102 2.3404   1022 3.9700     1037 8.7473     1046 2.1443    1047 1.1678   104 

 0.5676  106 

 
5.4773   1044 

-0.0001  1044 
1.5761     1075 

-0.0000    1075 

+0.0000   1075 

7.6515     1093 

-0.0000    1093 

+0.0000   1093 

4.5980    1094 

-0.0000   1094 
1.3638   108 

6 0.5676  106 5.4774   1044 1.5761     1075 7.6715     1093 4.5980     1094 1.3638   108 

 
Table 3. Table of intermediary computations of the roots of (3-2) 

 

k ��
(�)

 ��
(�)

 ��
(�)

 ��
(�)

 ��
(�)

 

0 1 0.68342 1.95562 0.37654 1.79420 

 1 0.46706 
- 3.91124 

3.82445 
- 0.51467 
+ 3.58840 

0.14178 
- 7.01755 

3.21915 

1 1 - 3.44418 6.89818 - 6.87577 3.21915 

 1 11.86238 
- 13.79636 

47.58489 
- 47.36278 
6.43830 

47.27621 
- 44.41255 

10.36293 

2 1 - 1.93398 6.66041 2.86366 10.36293 

 1 3.74028 
- 13.32082 

44.36106 
11.07652 
20.72586 

8.20055 
- 138.04273 

107.39032 

3 1 - 9.58054 76.16344 - 129.84218 107.39032 

 1 91.78675 
- 152.32688 

5.80087·103 
-2.4879·103 
0.21478·103 

1.68590·104 
-1.6358·104 

1.15327·104 

4 1 -6.05401·101 3.52773·103 0.05006·104 1.15327·104 

 1 3.66511·103 

-7.05546·103 
1.24449·107 
6.06127·104 
2.30654·104 

2.50600·105 
-8.1368·107 

1.33003·108 

5 1 -3.39035·103 1.25286·107 -8.1118·107 1.33003·108 

 1 11.49447·106 
-2.50572·107 

1.56966·1014 
5.50036·1011 
2.66006·108 

6.58011·1015 
-3.3327·1015 

1.76898·1016 

6 1 -1.35627·107 1.56911·1014 3.24743·1015 1.76898·1016 

 1 1.83947·1014 

-3.13822·1014 
2.46211·1028 
8.80878·1022 

3.53796·1016 

1.05458·1031 
-5.5514·1030 

3.12929·1032 

7 1 -1.29875·1014 2.46211·1028 0.49944·1031 3.12929·1032 
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coefficients. Moreover their signs are not constant when 
passing from iteration to another. As two columns are 
concerned, the initial equation has two couples of conjugate 
complex roots, so all the roots are complex. At k = 7, m = 27 = 
128, these double products do not more affect the square of the 

main coefficients in column ��
(�)

. This indicates that we can 
stop the squaring process.  
 
Formula (20) permits us to find the modules of the complex 
roots: 
 

(��
�)��� =  

�.����� · ����

�
 , r1 = 1.29093, 

 

(��
�)��� =  

�.����� · ����

�.����� · ���� ,  r2 = 1.03760. 

 
From (28) we have the system of two equations to be solved 
for the cosines of the arguments: 
 
0.68342 = - (2.58186cosφ1 + 2.07520cosφ2 ), 
 
�.�����

�.�����
 = - �

� ��� ��

�.�����
+  

� ��� ��

�.�����
�. 

 
We have: 
cos�� = -0.50063 and cos�� = 0.29354. 
 
Letting x1,2 and x3,4 the two couples of conjugate complex 
roots and recalling that:  
 

x1 + x2 = 2 cos�� =  - 1.29259, x1x2 = r1
2 = 1.66644, 

x3 + x4 = 2 cos�� =  0.60917, x3x4 = r2
2 = 1.07667, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the initial equation can be put into the product of two quadratic 
factors: 
 

x4 +  0.68342 x3 + 1.95562 x2 + 0.37654 x + 1.79420 =  
(x2 + 1.29259x + 1.66644) (x2 – 0.60917x + 1.07667) = 0, 
 
and solving each one by quadratic formulas gives the searched 
complex roots. 
 
Conclusion 
 
It is obvious that the method of Lobachevski is easily 
applicable when searching roots of nonlinear algebraic 
equations. No powerful computer is needed and a pocket 
simple scientific calculator can be used. This method gives all 
the roots at once, compare to other frequently encountered 
iterative methods, without wasting time searching their 
intervals of appurtenance. Thus, the method of Lobachevski 
should be widely recommended for operational works. 
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